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° theory is not programmable. Progress often comes from exploiting connections between fields/frontiers/disciplines

subtext: intensity frontier theory for its own sake, but also influences broader theory

] theorists must demand error bars from experimenters, who in turn must demand improvements from theory
° nucleon physics is not nuclear physics (not that there’s anything wrong with that)
° experimental data drives theory. Demand for precision and quantitative predictions leads to new theoretical

developments that underpin next generation experiments.
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heavy particle effective theory (NRQED of composite particles)

Lorentz invariance in heavy particle effective theories: [Heinonen, Solon, RIH, 1208.0601]
® chiral lagrangian = nonlinear realization of chiral symmetries
® HPEFT = nonlinear (induced) representation of Lorentz symmetry (noncommutative manifold)

e contradicts ~20 year old ansatz of reparameterization invariance, underlying HQET, etc.

would not have asked these questions if not driven by data

many consequences and applications:
e feedback into atomic physics (model independent analysis of rad.corr. to nuclear structure, cf. Friar 1979)
[Lee, Paz, Solon, RJH, 1212.4508]

® nucleon properties, e.g. polarizabilities from lattice QCD, static, lattice F Xscattering, PDG

e BSM particles, e.g. heavy WIMPs
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what’s at stake:

® ~70 shift in Rydberg + discarding of decades of scattering
and spectroscopic data !

® large radiative corrections to leading proton structure ?

® experimental error ?

® something “new” ?

heavy particle effective theory (NRQED of composite particles)

[Heinonen, Solon, RIH, 1208.0601]

® chiral lagrangian = nonlinear realization of chiral symmetries

® HPEFT = nonlinear (induced) representation of Lorentz symmetry (honcommutative manifold)

e contradicts ~20 year old ansatz of reparameterization invariance, underlying HQET, etc.

many consequences and applications:
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e BSM particles, e.g. heavy WIMPs

would not have asked these questions if not driven by data

e feedback into atomic physics (model independent analysis of rad.corr. to nuclear structure, cf. Friar 1979)

[Lee, Paz, Solon, RH, 1212.4508]

® nucleon properties, e.g. polarizabilities from lattice QCD, static, lattice F Xscattering, PDG
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heavy WIMP effective theory

® WIMPs plausibly heavy compared to mw, mz (maybe not extremely small, cf. mn/m)

® analog of heavy-quark spin-flavor symmetry:

® BSM particles, e.g. heavy WIMPs

(self-conjugate, spin-independent case)
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100 120 => absolute predictions for scattering cross sections of WIMP dark matter
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° theory is not programmable. Progress comes from exploiting connections between fields/frontiers/disciplines

heavy meson processes

theory developments

analyticity
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lattice QCD

SCET, HQET, NRQCD
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theory developments

analyticity ,
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] theorists must demand error bars from experimenters, who in turn must demand improved theory
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neutrino-nucleus cross sections notoriously difficult.  E.g., MiniBooNE excess: deviation from MC in
never-measured single-photon production, or new physics ?
What is the uncertainty ! Is 15% reasonable ! Recall ~40% uncertainty on basic CCQE
Event generators:
- typically RFG model at nuclear level (now receiving some attention) [Smith and Moniz 1972]
- antiquated nucleon-level assumptions [Llewellyn Smith 1972]
Essential for next generation experiments to do better with both nucleon-level inputs and nuclear modeling
° nucleon, nuclear and hadronic physics, including radiative corrections, essential to “Intensity frontier” experiments
- neutrinos, g-2, edm, mu-e, proton decay, n-nbar oscillation, ...
- should be the domain of HEP to study the entire problem. Can’t outsource.
° experimental data drives theory. Demand for precision and quantitative predictions leads to new theoretical
developments that motivate and underpin new experiments.
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